Russian Journal of Organic Chemistry, Vol. 41, No. 9, 2005, pp. 1286–1288. Translated from Zhurnal Organicheskoi Khimii, Vol. 41, No. 9, 2005, pp. 1313–1315. Original Russian Text Copyright © 2005 by Zefirova, Nurieva, Zyk.

> Dedicated to Full Member of the Russian Academy of Sciences N.S. Zefirov on His 70th Anniversary

Synthetic Approaches to Physiologically Active Polycyclic Compounds: VI.* Synthesis of 1-[(2R,3S)-N-Benzoylphenylisoseryloxy]-4,4-dimethyladamantane

O. N. Zefirova, E. V. Nurieva, and N. V. Zyk

Faculty of Chemistry, Moscow State University, Vorob'evy gory 1, Moscow, 119992 Russia

Received June 21, 2005

Abstract—A convenient procedure was proposed for the synthesis of 4,4-dimethyladamantan-1-ol from 2-adamantanone. Esterification of the product with protected amino acid gave 1-[(2R,3S)-N-benzoylphenyl-isoseryloxy]-4,4-dimethyladamantane.

In the framework of our studies on the synthesis of potential antitumor agents, we are developing methods for preparation of derivatives of the adamantane and bicyclo[3.3.1]nonane series, which contain functional groups capable of binding to cell targets (e.g., *N*-benzoylphenylisoseryloxy group) in definite positions of the carbon skeleton [1–5]. The goal of the present work was to synthesize 1-[(2R,3S)-N-benzoylphenyl-isoseryloxy]-4,4-dimethyladamantane (**V**).

We planned to obtain the target compound via esterification of the corresponding cage-like alcohol with amino acid according to the procedure developed by us previously [6]. However, the only reported method for the preparation of 4,4-dimethyladamantan1-ol (III) [7] includes a number of steps and is laborious; moreover, it implies the use of organoboron reagents. Therefore, we have developed a fairly simple and convenient procedure for the synthesis of alcohol III. As starting compound we used 2-adamantanone which was converted into 2-methyladamantan-2-ol (I) following the standard procedure (treatment with methylmagnesium iodide in dry diethyl ether. To obtain 2,2-dimethyladamantane (II), compound I was subjected to methylation with (TiMe₂)Cl₂ which was generated *in situ* from TiCl₄ and ZnMe₂ [8]. Insofar as the reaction with a commercial solution of ZnMe₂ in toluene was characterized by a very poor yield, we have developed a laboratory method for the synthesis

* For communications I-V, see [1-5].

1070-4280/05/4109-1286 © 2005 Pleiades Publishing, Inc.

of $ZnMe_2$ in methylene chloride on the basis of the procedures described in [9, 10]. In this case, the yield of the methylation process was 64%. It should be noted that in the reaction of 2-adamantanone with 4 equiv of $(TiMe_2)Cl_2$ the product yield did not exceed 40%.

Alcohol III was synthesized by oxidation of 2,2-dimethyladamantane (II). The best result (yield 49%) was obtained with the use of *m*-chloroperoxybenzoic acid as oxidant [11]. The ¹H NMR spectrum of the oxidation product contained signals from the methyl protons at δ 0.87 and 0.88 ppm, while no signal from proton on C¹ was present; this means that the product is a tertiary alcohol. The structure of the product as 4,4-dimethyladamantan-1-ol rather than isomeric 2,2-dimethyladamantan-1-ol follows from the presence of a single downfield signal at δ 2.13 ppm in the ¹H NMR spectrum, which corresponds to 7-H. The symmetry of 2,2-dimethyladamantan-1-ol implies that signals from two protons, 5-H and 7-H, should appear in a weak field. In the ¹³C NMR spectrum of **III** we observed signals from the methyl carbon atoms at $\delta_{\rm C}$ 26.70 and 28.70 ppm and a signal at $\delta_{\rm C}$ 67.25 ppm belonging to C^1 .

(2R,3S)-*N*-Benzoylphenylisoserine ester **VI** was synthesized in three steps with intermediate isolation of protected amino acid ester **V** according to the procedure described in [6] (Scheme 1). The structure of previously unknown compounds **V** and **VI** was proved by the ¹H and ¹³C NMR and IR spectra and elemental analyses.

Thus we have developed a convenient procedure for the synthesis of 4,4-dimethyladamantan-1-ol whose esterification gives 1-[(2R,3S)-N-benzoylphenylisoseryloxy]-4,4-dimethyladamantane.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-400 spectrometer (400 MHz for ¹H) using hexamethyldisiloxane as internal reference. The IR spectra were measured on a UR-20 instrument from samples dispersed in mineral oil. The mass spectra were run on a JMS-D300 GC–MS system. The progress of reactions was monitored by TLC on Silufol UV-254 plates. Silica gel (40–60 μ m, Acros) was used for column chromatography.

2-Methyladamantan-2-ol (I). A solution of 1.34 ml (0.22 mol) of methyl iodide in 20 ml of diethyl ether was added dropwise over a period of 20 min to a suspension of 0.52 g (0.22 mol) of magnesium

powder in 50 ml of dry diethyl ether under argon at room temperature. When the mixture became homogeneous (magnesium dissolved completely), a solution of 3 g (0.02 mol) of 2-adamantanone in 50 ml of diethyl ether was added dropwise, and the mixture was heated for 2 h under reflux. The mixture was then treated with 50 ml of water, and the organic phase was separated, washed with water (2×30 ml), dried over Na₂SO₄, and evaporated on a rotary evaporator. The product was recrystallized from 2-propanol. Yield 3.29 g (99%), colorless crystals, mp 181–184°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.3 d (3H), 1.50– 1.84 m (12H), 1.56 s (1H, OH), 2.14–2.17 d (2H).

Dimethylzinc in methylene chloride. To a solution of 2.35 g (0.011 mol) of citric acid monohydrate in 30 ml of water we added at room temperature 2.69 g (0.011 mol) of $Cu_2(OH)_2CO_3 \cdot H_2O$. The mixture was stirred until gas no longer evolved and was evaporated to dryness on a rotary evaporator. Zinc dust, 26 g (0.4 mol), was added to the residue (copper citrate hydrate), and the mixture was heated under stirring in a stream of dry argon until water vapor no longer evolved. Methyl iodide, 5 ml (0.1 mol), was added dropwise to the resulting Zn/Cu couple under stirring in a counterstream of argon. The mixture was heated for 2 h under reflux, cooled, and distilled in a stream of argon to collect a fraction with bp 78°C in a receiver containing 8 ml (10 g) of methylene chloride. We thus obtained 6.11 g (65%) of ZnMe₂ as a solution in CH₂Cl₂ (4 mmol of ZnMe₂ per gram of the solution).

2,2-Dimethyladamantane (II). A solution of 0.66 ml (6 mmol) of TiCl₄ in 30 ml of dry methylene chloride was cooled to -30 to -40°C, and a solution of 1.5 g (6 mmol) of ZnMe₂ in methylene chloride was added through a Teflon tube under stirring in an argon atmosphere. After 20 min, a solution of 1 g (6 mmol) of 2-methyladamantan-2-ol (I) in 10 ml of dry methylene chloride was added dropwise at -30°C. The mixture was kept for 30 min at that temperature, allowed to warm up to room temperature, and stirred for 1 h. Water, 10 ml, was then added dropwise on cooling with ice, and the organic layer was separated, washed with 2 N hydrochloric acid $(3 \times 15 \text{ ml})$, a saturated solution of NaHCO₃ (25 ml), and water (15 ml), dried over Na₂SO₄, and evaporated on a rotary evaporator. The product was purified by vacuum sublimation (1 mm) on heating on a water bath. Yield 0.63 g (64%), colorless crystals, mp 139–140°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.05 s (6H), 1.33 s (2H), 1.53 d (4H), 1.65 s (2H), 1.78 t (2H), 2.07 d (4H).

4,4-Dimethyladamantan-1-ol (III). A solution of 1.5 g (4.3 mmol) of 50% m-chloroperoxybenzoic acid in 30 ml of 1,2-dichloroethane was added to 400 mg (2.4 mmol) of 2,2-dimethyladamantane (II), and the mixture was heated for 24 h at 65°C. It was then cooled to room temperature and diluted with 25 ml of 1,2-dichloroethane, and 8 ml of a 1 N solution of sodium hydroxide was added. The organic phase was washed with 10 ml of a 1 N solution of sodium hydroxide and water (2×10 ml), dried over Na₂SO₄, and evaporated on a rotary evaporator. The residue was subjected to column chromatography on silica gel using ethyl acetate-petroleum ether (bp $40-60^{\circ}$ C) (first 1:9 and then 1:5) as eluent to isolate 190 mg of initial compound II and 210 mg (49%) of product III as colorless crystals with mp 98-100°C. IR spectrum, v, cm⁻¹: 3350 (OH), 1465, 1380, 1369. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.87 s and 0.88 s (3H each, CH₃), 1.12 s (1H, OH), 1.28–1.66 m (8H), 2.02 m (2H), 2.11 m (2H), 2.13 m (1H). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 26.70 and 28.70 (CH₃), 32.36, 33.45, 35.33, 39.59, 41.74, 46.21, 67.25 (C¹). Mass spectrum, m/z (I_{rel} , %): 180 $[M]^+$ (37), 166 (25), 123 (85), 109 (100), 95 (55), 81 (32), 55 (35), 43 (35).

tert-Butyl (4S,5R)-2,2-dimethyl-5-(4,4-dimethyl-1-adamantylcarbonyloxy)-4-phenyloxazolidine-3carboxylate (V) was synthesized according to the procedure described in [6] from 0.15 g (0.8 mmol) of 4,4-dimethyladamantan-1-ol (III) and 0.27 g (0.84 mmol) of tert-butyl (4S,5R)-5-carboxy-2,2-dimethyl-4-phenyloxazolidine-3-carboxylate (IV) in dry methylene chloride. The product was isolated by column chromatography on silica gel using ethyl acetatepetroleum ether (bp 40-70°C) (1:10) as eluent. Yield 0.2 g (53%), colorless liquid. ¹H NMR spectrum $(CDCl_3)$, δ , ppm: 1.03 s and 1.09 s (3H each, CH₃), 1.12 s (9H, t-Bu), 1.28–2.08 m (12H, CH, CH₂, and CH₃ in adamantane), 2.50 m (1H, CH, adamantane), 4.50 d (1H, OCHCHN), 4.96 s (1H, OCHCHN), 7.17-7.36 m (5H, Ph).

4,4-Dimethyl-1-adamantyl (2R,3S)-3-benzoylamino-2-hydroxy-3-phenylpropionate (VI) was synthesized according to the procedure described in [6] from 0.15 g (0.31 mmol) of ester V in 10 ml of 85% formic acid. Intermediate product was treated with 0.05 g (0.35 mmol) of benzoyl chloride. The product was isolated by column chromatography on silica gel using ethyl acetate-petroleum ether (bp 40–70°C) (first 1:5 and then 1:1) as eluent. Yield 0.13 g (93%), colorless crystals, mp 115–117°C, $[\alpha]_D^{23} = -16.1°$ (c = 0.01, CH₂Cl₂). IR spectrum, v, cm⁻¹: 3280–3320 (OH, NH), 1720 (C=O, ester), 1645 (C=O, amide), 1610, 1580, 1560. ¹H NMR spectrum (CDCl₃), δ , ppm: 1.03 s and 1.09 s (3H each, CH₃), 1.12–2.08 m (13H, CH and CH₂ in adamantane, OH), 2.50 (1H, CH, adamantane), 4.54 d (1H, CHOH), 5.78 d.d (1H, CHN), 7.16 d (1H, NH), 7.29–7.81 m (10H, H_{arom}). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 26.60 and 27.95 (CH₃), 30.17, 31.85, 34.54, 36.60, 36.72, 40.14, 42.90, 54.74 (CHN), 73.52 (CHOH), 84.23 (C¹), 126.96–138.96 (C_{arom}), 166.90 (CONH), 171.82 (COO). Found, %: C 75.33; H 7.86; N 3.50. C₂₈H₃₃NO₄. Calculated, %: C 75.14; H 7.43; N 3.13.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-32937).

REFERENCES

- Zefirova, O.N., Selyunina, E.V., Averina, N.V., Zyk, N.V., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 1125.
- Zefirova, O.N., Selyunina, E.V., Nuriev, V.N., Zyk, N.V., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 831.
- Averina, N.V., Borisova, G.S., Zefirova, O.N., Selyunina, E.V., Zyk, N.V., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 497.
- Zefirova, O.N., Nurieva, E.V., Chekhlov, A.N., Aldoshin, S.M., Nesterenko, P.N., Zyk, N.V., and Zefirov, N.S., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 502.
- 5. Averina, N.V., Zefirova, O.N., Zefirov, N.S., Chekhlov, A.N., Shilov, G.V., and Aldoshin, S.M., *Russ. J. Org. Chem.*, 2004, vol. 40, p. 1437.
- Selyunina, E.V., Zefirova, O.N., Zyk, N.V., and Zefirov, N.S., *Vestn. Mosk. Gos. Univ., Ser. 2: Khim.*, 2002, vol. 43, p. 237.
- Mikhailov, B.M., Smirnov, V.N., Smirnova, O.D., Prokof'ev, E.I., and Shashkov, A.S., *Izv. Akad. Nauk SSSR*, *Ser. Khim.*, 1979, p. 2340.
- Reetz, M.T., Westermann, J., and Steinbach, R., J. Chem. Soc., Chem. Commun., 1981, p. 237.
- 9. Noller, C.R., *Organic Syntheses*, Blatt, A.H., Ed., New York: Wiley, 1943, collect. vol. 2, p. 184.
- 10. Robert, C.K. and Philip, J.C.T., J. Am. Chem. Soc., 1954, vol. 76, p. 2262.
- 11. Takaishi, N., Fujikura, Y., and Inamoto, Y., *Synthesis*, 1983, p. 293.